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Abstract
Purpose of Review Angiotensin-converting enzyme 2 (ACE2), a specific high-affinity angiotensin II-hydrolytic enzyme, is the
vector that facilitates cellular entry of SARS-CoV-1 and the novel SARS-CoV-2 coronavirus. SARS-CoV-2, which crossed
species barriers to infect humans, is highly contagious and associated with high lethality due to multi-organ failure, mostly in
older patients with other co-morbidities.
Recent Findings Accumulating clinical evidence demonstrates that the intensity of the infection and its complications are more
prominent in men. It has been postulated that potential functional modulation of ACE2 by estrogen may explain the sex
difference in morbidity and mortality.
Summary We review here the evidence regarding the role of estrogenic hormones in ACE2 expression and regulation, with the
intent of bringing to the forefront potential mechanisms that may explain sex differences in SARS-CoV-2 infection and COVID-
19 outcomes, assist in management of COVID-19, and uncover new therapeutic strategies.
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Introduction

Since the first case of coronavirus disease 2019 (COVID-19)
was reported in Wuhan, China in December 2019, what was
initially a regional epidemic rapidly has expanded into a glob-
al pandemic affecting more than 180 countries and territories,
bringing significant morbidity and mortality [1]. Though ev-
eryone is vulnerable to this disease, certain populations, in-
cluding those greater than 65 years of age and persons with
comorbidities, are more susceptible to infection, present with
more severe symptoms, and have worse clinical outcomes.

Importantly, available clinical data show that approximately
15% to 30% of the COVID-19 patients are with hypertension
and 2.5% to 15% are with coronary heart disease [2–4].
Although hypertensive and coronary heart disease patients
are often effectively medically managed for their underlying
cardiovascular disease conditions, these patients remain prone
to develop cardiovascular complications from SARs-Cov2 in-
fection, including arrhythmias, myocarditis, unstable coronary
syndrome, and venous and arterial thromboses [5–7].
Hypertensive and coronary heart disease patients are also
demonstrating higher mortality from COVID-19 than patients
without these pre-existing diseases [8].

Male gender is emerging as an additional risk factor for
severe COVID-19 and worse outcomes, independent of age.
Data from China documents that 54.3–57.3% of hospitalized
patients and 61.1% of ICU patients were male [3, 9]. Italian
data also show that a significantly greater number of males
were admitted to inpatient care compared to females (82% vs
18%) [10]. Zhou et al. [11] reported that 62% of in-hospital
deaths in Wuhan were male; similar data from Korea [12]
reports 61.1% of in-hospital deaths were male. Considering
that the male inpatient number was higher than females in
Wuhan, the mortality rate was calculated as 32% (38/119) in
males compared to 22% (16/72) in females [11]. In another
study of 44,672 individuals with confirmed COVID-19 in
Wuhan, the death rate among men was 2.8% compared to
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1.7% among women [13, 14]. Likewise, Italy’s case fatality
rate as of mid-March 2020, according to the country’s national
health institute, was 10.6% in men compared to 6% in women
[15]. Identification of sex-specific differences in COVID-19
pathogenesis and disease presentation and intensity could help
in directing limited hospital and health care resources and
treatments and inform drug development and design.

The reasons for the higher male sex-specific COVID-19-
related mortality are likely to be multi-fold, including differ-
ences in lifestyle (e.g., higher rates of tobacco smoking and
alcohol consumption) and innate immunity [16]. Both Asian
and European data document that comorbidities increase the
risk for hospitalization and death in COVID-19 patients, and
in one study, COVID-19-positive males had more comorbid-
ities than females (59.8% males vs. 40.2% females) [9]. Due
to limited patient numbers, however, the prevalence of specif-
ic comorbidities varies in different reports [3, 9–12]. A meta-
analysis of 46,248 participants showed that the most prevalent
comorbidities among COVID-19-positive hospitalized pa-
tients were hypertension (17 ± 7, 95% CI 14–22%), diabetes
(8 ± 6, 95% CI 6–11%), cardiovascular disease (CVD; 5 ± 4,
95% CI 4–7%), and respiratory system disease (2 ± 0, 95% CI
1–3%) [17]. Potential differences in these comorbidities as a
function of sex have not been explored consistently.

Based on the growing evidence suggesting a sex-based
difference in COVID-19 outcomes, an assessment of sex-
specific hormone activity, particularly estrogen, in COVID-
19 pathogenesis is warranted. Estrogen is known to modulate
CVD risk and we [11] and others [18] have established a role
for estrogen in regulating renin-angiotensin system (RAS) ex-
pression and activity [18–28]. The identification of
angiotensin-converting enzyme-2 (ACE2) as the host cell re-
ceptor for the SARS-CoV-1 and SARS-CoV-2 [29]
coronaviruses has brought attention to the functions of this
enzyme outside the domain of its now established role in
modulating angiotensin II (Ang II) metabolism as part of the
RAS [30]. ACE2 binds the spike protein on the viral capsid
[31], which stimulates clathrin-dependent endocytosis
[32], the key event in SARS-CoV-2 infection. Here,
we discuss the potential connections between SARS-
CoV-2 infection and COVID-19 outcomes and sex-
specific differences in ACE2, cardiovascular comorbidi-
ties, and estrogen activity.

The Renin-Angiotensin System (RAS)

Current knowledge of the biochemical physiology of the RAS
has identified an internal arm of the system that acts to limit
Ang II pleiotropic actions in the regulation of body fluids,
arterial pressure, and cell growth (Fig. 1). In this arm of the
system, ACE2 hydrolyzes Ang II to form the heptapeptide
angiotensin-(1-7) [Ang-(1-7)], which binds to the Mas recep-
tor (Mas-R) to convey its biological actions. ACE2,

functioning as a mono-carboxypeptidase, degrades angioten-
sin I (Ang I) into angiotensin-(1-9) [Ang-(1-9)], which also
possesses antihypertensive properties [33]. The opposite arm
of the RAS comprises the ACE enzyme, the effector peptide
Ang II, and the receptors AT1-R and AT2-R [34, 35].
Activation of AT1-R by Ang II leads to vasoconstriction and
local inflammatory, oxidative stress, proliferative, and
profibrotic processes in a large host of organs/tissues includ-
ing the heart, kidney, lungs, brain, and adipose tissues [36,
37]. The relevance of AT1 activation underlies the develop-
ment of Ang II receptor blockers (ARBs) as pharmaceutical
therapeutics for hypertension, heart failure (HF), diabetic ne-
phropathy, and other CVDs. The vasoactive peptidase
angiotensin-converting enzyme (ACE), also a target for ther-
apeutic intervention, catabolizes the decapeptide Ang I into
Ang II and, albeit with lower affinity, Ang-(1-9) into Ang-(1-
7). ACE inhibitors have been mainstays in the treatment of
hypertension and CVD progression for decades [38]. Thus,
the two arms of the RAS–ACE/Ang II/AT1-R and
ACE2/Ang-(1–7)/Mas-R–have opposing cardiovascular ef-
fects. The intrinsic counter-regulatory mechanisms of local
tissue RAS are further modulated by a diverse set of autocrine
and paracrine factors, including hormones such as estrogen.
Recently, a noncanonical pathway leading to Ang II forma-
tion, via the conversion of Ang I or angiotensin-(1-12)
[Ang-(1-12)] by chymase, was deemed to be the primary con-
tributor in humans to tissue Ang II-induced CVD sequela
[39–41].

Emphasis on the major contribution that ACE2 has in Ang
II metabolism has obscured the fact that the enzyme has hy-
drolytic activity on des-Ar9-bradykinin, the natural ligand for
the bradykinin B1 receptor, as well as apelin-13 and dynorphin
A [42–44]. Transgenic mice with increased ACE2 expression
demonstrate severe, progressive conduction and rhythm dis-
turbances with sustained ventricular tachycardia and terminal
ventricular fibrillation. The arrhythmic events are related to
the downregulation of the gap junction proteins connexin40
and connexin43 [45]. These data are important because
emerging evidence demonstrates the frequent occurrence of
cardiac events including arrhythmias and sudden death in pa-
tients with advanced COVID-19 infection [46]. The potential
interplay between ACE2 and connexins remains to be
investigated.

ACE2 in Cardiovascular Disease

Given that ACE2 is widely expressed on the surface of vas-
cular endothelial cells and epithelial cells of the lung, heart,
kidney, testis, and the gastrointestinal tract [47–50], its link to
cardiovascular pathology cannot be ignored. In healthy indi-
viduals without apparent CVD, circulating ACE2 activity is
low, in part due to the presence of a circulating ACE2 inhibitor
[51, 52]. Patients with cardiac disease have elevated
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circulating levels of ACE2 [53]; this is thought to represent
either a counter-regulatory mechanism that protects against
dysfunction or a factor in the pathogenesis of the disease itself
[54], such that release of ACE2 into the circulation and sub-
sequent inhibition decreases its availability in the heart, there-
by exacerbating local Ang II effects. Clinical studies show that
elevated circulating ACE2 levels predict adverse events in the
presence of coronary artery disease [55, 56], atrial fibrillation
[57], heart transplantation [58], and HF [59]. In a recent study
involving cardiac surgery patients for aortic valve replacement
due to aortic stenosis, Ramchand et al. [60] found that eleva-
tions in plasma ACE2 activity were associated with reduced
myocardial ACE2 gene expression, increased myocardial
structural abnormalities such as LV mass and valvular calcifi-
cation, and more severe cardiac fibrotic remodeling. With a
median survival follow-up of 5 years, this study further
showed that elevated plasma ACE2 predicted all-cause mor-
tality, irrespective of baseline clinical, imaging, and biochem-
ical findings. While circulating ACE2 levels were higher
among male patients, there was no sex-specific difference in
overall survival. Moreover, in 161 patients with essential hy-
pertension and 47 age- and sex-matched normotensive healthy
subjects, Li et al. [61] reported that serum ACE2 concentra-
tions were positively associated with left atrial diameter, left
ventricular end-diastolic diameter, and left ventricular mass in
hypertensive patients. Urinary ACE2 levels also positively
correlated with systolic blood pressure (SBP) in hypertensive
patients [62]. Any effect of inhibition of Ang II synthesis or
activity on tissue ACE2 expression/activity was not addressed
in these clinical studies. Ferrario’s laboratory first reported in
rodents that chronic treatment with ACE inhibitors and ARBs
augments ACE2 gene expression and activity in the heart and

vasculature of several models of hypertension or cardiac dys-
function [63–65]. ACE2 upregulation by ARBs was corrobo-
rated by others using mouse and rat models of pressure
overload-induced hypertrophic remodeling [66, 67]. These
results, when taken together, suggest that elevations in circu-
lating ACE2 are directly linked to clinical abnormalities in
cardiovascular function and structure, and in some cases, in-
versely related to tissue ACE2.

Various preclinical models of CVD also point toward
ACE2 as a regulator of end-organ dysfunction, evidenced
by relatively lower tissue levels in most cases and higher
peripheral ACE2 compared to disease-free counterparts.
Kidney ACE2 mRNA and protein expression are substan-
tially lower in spontaneously hypertensive rats (SHR) than
in normotensive Wistar-Kyoto (WKY) rats [68] .
Pendergrass et al. [69] also found that hypertensive male
mRen2.Lewis rats had lower renal cortical ACE2 activity
than normotensive Lewis rats. Crackower et al. [70] land-
mark study revealed that genetic depletion of Ace2 in mice
resulted in cardiac systolic dysfunction and an upregulation
of cardiac hypoxia-induced genes, along with increases in
cardiac, kidney, and circulating Ang II. ACE2 deletion
models have a significantly higher mortality rate after myo-
cardial infarction (MI) than wildtype mice, with adverse
ventricular remodeling and worsening ventricular function
following MI [71]. Trask et al. [72] showed in male
(mRen2)27 transgenic hypertensive rats that chronic inhibi-
tion of ACE2 with MLN-4760 for 28 days caused accumu-
lation of cardiac Ang II, worsening of cardiac hypertrophy,
and fibrosis without changes in circulating Ang II and
Ang-(1-7). ACE2 inhibition byMLN-4760 also led to wors-
ening of kidney function in diabetic mice [73].

Angiotensin-(1-12)

Angiotensinogen

Angiotensin I

Renin

CHY Angiotensin II Angiotensin-(1-7)

AT1-R Mas-R

Cell growth and differentiation
Oxidative stress
Inflammation
Fibrosis
Vasoconstriction

NEPACE

ACE

CHY

ACE2
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CoV-2
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Fig. 1 Overview of angiotensinogen products and their functions in the
RAS. Angiotensinogen is hydrolyzed into biologically active products
[Angiotensin II and Angiotensin-(1-7)] by renin/ACE/CHY/NEP
enzymatic pathways. Angiotensin II and Angiotensin-(1-7) interact with
receptors present on the membrane (AT1-R and Mas-R, respectively) for

their biological activities. Research shows that the spike protein on the
capsid of SARS-CoV-2 also binds with ACE2. Abbreviations: CHY,
chymase; ACE, angiotensin-converting enzyme; ACE2, angiotensin-
converting enzyme-2; NEP, neprilysin (neutral endopeptidase 24.11);
AT1-R, Angiotensin II type 1 receptor; and Mas-R, Mas receptor
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Sex-based Differences in ACE2

Results from both clinical and laboratory studies underscore a
substantial gap in knowledge of sex differences in ACE2 or
the impact of sex hormones on the ACE2/Ang-(1-7)/Mas-R
axis. In addition to its regulatory role in various CVD states,
the existence of a sex-specific pattern of ACE2 expression and
activity in cardiovascular tissue may shed light on the ob-
served sexual dimorphic pattern of COVID-19 severity. Sex
differences in ACE2 may be due to differences in sex chro-
mosome dosage and/or differences in the gonadal sex hor-
mone milieu. The ACE2 gene is located on the X-
chromosome [74]; sex differences in ACE2 expression levels
between males and females may thus be dependent on the
number of X chromosomes present (one in males and two in
females) and the intricacies connected to X-chromosome si-
lencing [75]. Importantly, in an elegant study by Liu and col-
leagues [75] using the FCG mouse model, higher ACE2 ac-
tivity in males was found to be a function of the hormonal
environment rather than sex chromosome number.
Specifically, ACE2 activity in the kidneys of intact mice, go-
nadectomized mice, and gonadectomized mice given estrogen
revealed that only the estrogen-replete group had reduced
ACE2 activity, irrespective of the chromosome complement.
Interestingly, heart and lung ACE2 activity showed no differ-
ences with respect to hormone status or chromosome comple-
ment in this experimental model. Oudit et al. [76] found that
ACE2 gene knockdown led to increased renal injury suscep-
tibility in male mice, while females were protected. A sexual
dimorphic pattern in Ang II-induced kidney disease progres-
sion was also reported in ACE2-null diabetic male mice com-
pared to their diabetic female counterparts [77]. Whether sex
differences in ACE2 expression, as a function of chromosom-
al differences, can explain, in part, the sexual dimorphic pat-
tern in Covid-19 epidemiology, irrespective of estrogen status
remains speculative.

In addition to the kidney, tissue-specific regulation of ACE
and ACE2 in the heart by sex hormones is thought to contrib-
ute to sex-related differences in CVD [69, 78, 79]. Using
SHRs, Dalpiaz et al. [79] showed higher ACE and ACE2
catalytic activity, lower contractility (dP/dt max), and greater
hypertrophy (LV/TL) in males compared to age-matched fe-
males. However, following gonadectomy, these sex-related
differences were reversed. Orchiectomized males exhibited a
decrease in cardiac ACE2 and ACE enzymatic activity and
hypertrophy, and a relative increase in contractility compared
to intact males. Ovariectomized (OVX) females showed in-
creases in cardiac ACE2 activity without altering ACE activ-
ity, and hypertrophic remodeling with reductions in dP/dtmax

and concomitant increases in PLB/SERCa2, a marker of re-
duced cardiomyocyte availability intracellular Ca2+, com-
pared to their gonad-intact counterparts [79]. In the
mRen2.Lewis rat, a tissue renin model of hypertension, males

exhibited significant increases in cardiac hypertrophy (defined
by heart weight normalized to body weight), systolic blood
pressure, and cardiac ACE2 activity compared with female
littermates [69]. Whether the augmentation in ACE2 activity
represents a compensatory effect remains unclear since a sex-
related differential in cardiac angiotensins or ACE activity
was not observed. Importantly, in normotensive Lewis rats,
cardiac ACE2 activity was similar between sexes [69].

Estrogen Regulation of ACE2

Sexual dimorphic patterns in COVID-19 epidemiology and
disease severity may be linked to estrogen and estrogen recep-
tor regulation of tissue ACE2. The three naturally occurring
estrogens in females are estrone (E1), estradiol (E2), and estriol
(E3) [80]. A fourth form of estrogen, estetrol (E4), is produced
only during pregnancy [81]. The biological actions of estrogens
are mediated by three estrogen receptors (ER), ER[alpha],
ER[beta], and G protein-coupled ER (GPER). All three recep-
tors have been localized in cardiovascular, respiratory, nervous,
reproductive, and muscle tissue [82–84]. The ligand-dependent
classical mechanism of estrogen action, mediated by ER[alpha]
and ER[beta], involves direct and indirect genomic signaling
pathways that result in target gene expression [85, 86]. By
contrast, membrane-bound GPER is primarily responsible for
the rapid nongenomic actions of estrogens mediated through
various protein-kinase cascades [86]. GPER expression is inde-
pendent to that of the ERs.While estradiol is the primary ligand
for the three estrogen receptors, specific agonists including pro-
pyl pyrazole triol (PPT), a selective agonist for ER[alpha]; diary
propionitrile (DPN), which is a potent ER[β] agonist; and
G1,1-[4-(6-bromobenzo[1,3]dioxol-5yl)-3a,4,5,9b-tetrahydro-
3H-cyclopenta[c] quinolin-8-yl]-ethenone), a GPER agonist
that displays no activity at ER[α] and ER[β], are commonly
used in preclinical studies to determine the exact roles the indi-
vidual ERs play in regulating biological functions of various
organ systems through health and disease [83, 87].

Using various normotensive and hypertensive rodent
models, Groban’s laboratory reported that loss of ovarian es-
trogen by OVX leads to diastolic dysfunction and LV inter-
stitial remodeling and hypertrophy [22, 88, 89]. Upon probing
the local cardiac RAS in normotensive WKY rats and SHRs,
we found both strain and estrogen effects with respect to car-
diac ACE2 activity [20]. Specifically, ACE2 activity was 25%
higher in gonadal-intact normotensive WKY rats versus
gonadal-intact SHRs and the loss of ovarian estrogens led to
a marked reduction in activity of ACE2 by nearly 30% in the
normotensive WKY heart, compared with a 13% decrease in
hypertensive SHR hearts. ACE2 deactivation showed a robust
correlation to the diastolic dysfunctional phenotype of SHRs
and a modest relationship to worsening filling pressures in
WKY rats after OVX. In a follow-up study to determine the
exact role of estrogen status on ACE2 in isolated
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cardiomyocytes [21], we again found that ACE2 activity was
higher in normotensive WKY rats, although this strain effect
was independent of estrogen status. Indeed, loss of ACE2 has
been shown to accelerate maladaptive remodeling after MI
[71]. Interestingly, studies conducted in pregnant animals fur-
ther showed that endogenous E2 has a modulatory effect on
ACE2 gene expression and activity in the kidney and uterus
[90]. In studies using the DOCA (deoxycorticosterone
acetate-salt) hypertensive rat model of salt-sensitive hyperten-
sion, Shenoy et al. [91] also reported increased levels of ACE2
in the left ventricle after high-dose E2 treatment. While many
of these findings suggest that exogenous estrogen up-regulates
ACE2, the expression or activity of the enzyme is likely de-
pendent on the specific pathological condition and species. In
a hypertensive model due to tissue renin-overexpression, even
though no changes in cardiac ACE2 gene or protein expres-
sion were observed despite OVX-induced worsening of hy-
pertension and LV diastolic function, chronic estrogen re-
placement led to reductions in cardiac ACE2 gene and LV
tissue expression levels (Fig. 2a) [19]. A similar downregula-
tion in ACE2 gene expression was also shown in the kidneys
of estrogen-replete ApoE−/−OVX mice [23]. Discrepancies
across these studies might be explained by differences in
ACE2 modulation by endogenous estrogens across ages, the
underlying conditions of health and disease, and variable dos-
ing and delivery modalities of exogenous E2.

Cardiac-specific responses to ACE2 modulation by estro-
gen might also be dependent on the quantity and distribution
of estrogen receptors in cardiac cells and tissues. We and
others have shown that ER[β] mRNA expression is
nondetectable or very low [82, 87, 94, 95], while GPER is
similar [87], higher [96], or lower [82] than ER[α] in tissue
and cardiomyocytes of rats, mice, and humans of both sexes,
depending upon physiologic and pathologic conditions [97,
98] and methodologies used [99]. In OVX SHRs, chronic
activation of GPER by its specific agonist G1 (100 μg/kg/d
for 4 weeks) downregulates ACE2 protein expression com-
pared to OVX vehicle-treated rats, while cardiac ACE2 is not
affected by equipotent treatment with selective agonists to
ER[α] (94 μg/kg/day) and ER[β] (58 μg/kg/day) (Fig. 2b)
[87]. Similarly, high-salt fed and OVX mRen2.Lewis female
rats chronically treated with G1 (400 μg/kg/day and
100 μg/kg/day, respectively, for 14 days) exhibited reduced
cardiac ACE2 mRNA compared to their vehicle-treated coun-
terparts (Fig. 2c) [92, 93]. Interestingly, E2 treatment of cul-
tured atrial tissue rendered from older male patients undergo-
ing cardiac surgery led to a protective shift in the ACE/ACE2
ratio at the mRNA and protein levels that were ER[α]-depen-
dent [100]. In contrast, 3 months of E2 treatment in female
APOe-OVX mice, a model of atherosclerosis, led to a down-
regulation of ACE2 mRNA in kidney that was deemed to be
mediated via ER[α], since the effect was lost in counterparts
lacking ER[α] [23]. Taken together, how estrogen status

influences local ACE2 expression and activity in cardiovas-
cular tissue is likely modulated by a complex array of factors,
including the types of estrogen receptors present. Whether an
E2/GPER regulatory action on ACE2 in the heart has thera-
peutic potential in lung and other CV tissues in the context of
SARs-CoV2 infection remains to be investigated further.

RAS Blockade and COVID-19 Outcomes

We posit that neurohormonal imbalances in the RAS, and
particularly in ACE/ACE2, in the circulation or lung and car-
diac tissue due to older age [101], comorbid conditions [57,
61, 102, 103], male sex [104, 105], and estrogen deficiency
[100, 101] may modulate severity of COVID-19. The poten-
tial impact of chronic RAS blockade on ACE2 levels and thus
the virulence of SARS-CoV-2 is thus a critical consideration.
Both harmful and beneficial effects of ACE inhibitors and
ARBs on COVID-19 outcomes have been recently deliberat-
ed [106–110]. Preclinical animal studies show that expression
and function of ACE2 are markedly increased following
chronic RAS blockade. A landmark study by Ferrario et al.
[63] demonstrated increased cardiac ACE2 expression and
function in normotensive male rats chronically treated with
the ACEi lisinopril or ARB losartan compared to vehicle
[63]. Ocaranza et al. [111] showed increased cardiac levels
and activity of ACE2 1 week following MI from coronary
occlusion in ACE inhibitor-treated rats, while Ishiyama et al.
[64] showed increased levels of ACE2 mRNA following cor-
onary occlusion in male rats chronically treated with ARBs.
An upregulation of ACE2 gene and/or protein expression was
also reported in kidneys frommale normotensive rats [112], in
hypertensive kidneys from male transgenic Ren-2 rats [113],
and in thoracic aortas and carotid arteries from male SHRs
[65, 114] medicated with RAS blockers. If RAS blockade
similarly upregulates ACE2 in the lung’s bronchial branches,
the potential exists for an increase in SARS-CoV-2 entry into
alveolar type 2 cells [115], thereby increasing the viral load. In
addition, an increase in ACE2 expression in the heart follow-
ing RAS blockade suggests a potential mechanism underlying
the observation of acute myocarditis among patients infected
with SARS-CoV-2 [46, 116–119].

While there are many studies showing that ACE2 is upreg-
ulated by chronic RAS blockade, it is worth mentioning that
no change in ACE2with ACEi or ARBs have been reported in
only two separate studies [120, 121]. Mixed findings across
these studies are most likely due to physicochemical differ-
ences of ACE inhibitors and ARBs and to differences in their
degree of tissue and cell wall penetration [122].

Whether there are sex-specific differences in the effect of
chronic ACE inhibitors or ARB treatment on ACE2 upregu-
lation is not clear. To our knowledge, only four studies have
reported the effects of RAS inhibition on tissue ACE2 in
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female animal models. In female normotensive C57BLKS/J
mice, Soler et al. [123] showed an increase in ACE2 expres-
sion in kidney arterioles after administration of the ARB
telmisartan. In female Sprague Dawley rats subjected to sub-
total nephrectomy, ACE inhibition by ramipril ameliorated
kidney injury-induced reductions in cortical and medullary
ACE2 activity [124]. Myocardial infarction–related increases
in cardiac ACE2 gene and protein expression were exacerbat-
ed by ACE and ARB inhibition and combination therapy in
female Sprague Dawley rats [121]. In contrast, we observed
significant reductions in cardiac ACE2 mRNA and activity in
OVX SHRs following long-term treatment with the ACE in-
hibitor lisinopril compared to gonad-intact, OVX-vehicle, and
OVX-G1-treated age-matched animals (unpublished data). As
expected, ACE inhibition led to marked reductions in blood
pressure compared to the other groups [125], which may ac-
count for the reductions in ACE2 in this hypertensive model.

In terms of hypertension control, one systematic review of
the literature revealed that sex-specific outcome data were
only reported in 43% of clinical trials reviewed, with ACE

inhibitors and ARBs conveying a slightly higher cardiovascu-
lar benefit in men versus women [126]. Reduced blood-
pressure-lowering effects of ACE inhibition in females has
also been supported in animal studies [127], with ARBs po-
tentially providing more benefit in females. Furthermore, in a
retrospective review of nearly 20,000 older (≥ 65 years of age)
patients with HF, women on ARBs had better survival than
those on ACE inhibitors (adjusted hazard ratio [HR] 0.69,
95% confidence interval [CI] 0.59, 0.80), while no difference
in survival was found in men prescribed ARBs compared to
ACEi (HR 1.10, 95% CI 0.95, 1.30) [128]. Whether sex dif-
ferences in efficacy of ACE inhibitors and ARBs in control-
ling hypertension and HF might contribute to differences in
the effect of chronic RAS inhibition on COVID-19 outcomes
is not known. With the advent of personalized medicine, the
factors considered for a patient with CVD should not only
include age, race, concomitant diseases, medications, and re-
nal and hepatic function but also sex. While the RAS plays a
key role in the development and progression of CVD, sub-
stantial variability in individual responses to ACEi and ARBs
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Fig. 2 Myocardial ACE2 in mRen2.Lewis rats and spontaneously
hypertensive rat (SHR) models. a ACE2 mRNA (left panel), protein
level (middle panel), and immunohistochemistry staining intensity
(right panel) in left ventricles of sham and ovariectomized (OVX)
mRen2.Lewis rats treated with either vehicle (V) or 17β-estradiol (E2,
36mg/pellet, 60-day release) for 4 weeks. Adapted fromWang et al. [19].
b ACE2 mRNA (left panel), protein (middle panel), and activity (right
panel) in the hearts of female sham and OVX SHRs treated with vehicle
or G1 (100 μg/kg/day, s.c. for 4 weeks. Image depicts new and adapted
data from da Silva, et al. [87]. c Left panel: cardiac ACE2 mRNA

expression in sham and ovariectomized mRen2.Lewis rats treated with
vehicle or G1 (100 μg/kg/day, s.c. via osmotic mini-pumps) for 2 weeks.
Right panel: cardiac ACE2 mRNA in female mRen2.Lewis rats fed with
a normal salt (0.5% sodium; control) diet or a high-salt (4% sodium; HS)
diet for 10 weeks beginning at 5 weeks of age, and treated with vehicle or
G1 (400 μg/kg/day, s.c. via osmotic mini-pumps) for 2 weeks. Image
depicts new data from Wang et al. [92] and Jessup et al. [93]. mRNA
and protein were determined by real-time PCR and immunoblot,
respectively, and corrected by internal control GAPDH. Values are
means ± SEM; n = 5–7/group
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exists, particularly with respect to sex. Understanding and
identifying genes, gene products, and enzymatic activities in-
volved in the differential responses to RAS inhibitors could
improve our knowledge of how drugs differentially affect pa-
tients exposed to environmental stressors (e.g., airborne infec-
tious agents such as SARS-CoV-2) by sex [129].

Ironically, RAS inhibition that enhances tissue ACE2 may
be a means to protect the heart and lung. ACE2 activity in-
creases the production of Ang-(1-7), which leads to
vasodilatory, antiproliferative, antifibrotic, and antithrombotic
effects, processes that would counteract the negative cardio-
vascular effects of SARS-CoV-2 infection. We know that
overexpression of ACE2 prevents adverse cardiac remodeling
[130], and that treatment with Ang-(1-7) limits cardiac hyper-
trophy and fibrosis in rodent models subjected to hemody-
namic stress [131–133]. Pulmonary ACE2 may also have a
protective role via regulating the balance of circulating Ang II/
Ang-(1-7) levels [134]. It has been postulated that unrestricted
angiotensin II actions may, in part, be responsible for organ
injury in SARS-CoV-2 infection [135]. Continued viral repli-
cation contributes to reduced membrane ACE2 expression in
cultured cells [136]. Down-regulation of ACE2 activity in the
lungs could facilitate the initial neutrophil infiltration in re-
sponse to bacterial endotoxin and may result in unopposed
angiotensin II accumulation and local RAS activation [42].
While increases in Ang II during hypoxic periods lead to
pulmonary vasoconstriction [137], which is important in
preventing shunting, it can also trigger increases in vascular
permeability that contribute to pulmonary edema [138]. In
acute respiratory distress syndrome (ARDS) models, ACE2
knockdown induced more severe symptoms of disease com-
pared to ACE2-intact mice, while overexpression appeared to
be protective [138, 139]. The “cytokine storm” described as
the ultimate terminal event in ARDS is an example how pro-
tective immunological mechanisms can become lethal when
the magnitude of the biological response overwhelms control
mechanisms [140].

To date, only one study has reported a potential for positive
effects of RAS inhibition on COVID-19 outcomes. In a retro-
spective study of Chinese patients hospitalized with COVID-
19 from January 11, 2020 to February 23, 2020, Meng et al.
[141] evaluated the medical records of 42 patients (median
age 64.5 years; 57.1% male) taking antihypertensive medica-
tions. Of these patients, 17 were taking ACE inhibitors or
ARBs and the remaining 25 were taking other antihyperten-
sive medications, including calcium channel blockers, beta-
blockers, and diuretics. Patients not on ARBs or ACE inhib-
itors had higher rates of severe infection (48% [n = 12] vs.
23.5% [n = 4]), although the study was too small to detect
significance or effectively differentiate outcomes by sex.
While no overt benefit from RAS blockade was reported in
two large population-based observational studies, one in
Lombardy, Italy involving 6272 case patients [142] and one

in a large health care network in New York City involving
12,594 tested patients [143], it is important to note that no
association between use of ARBs or ACE inhibitors, or any
other antihypertensive medications, was confirmed in those
found to be positive for Covid-19, nor among those who had
a severe or fatal course of the disease. Moreover, no associa-
tion between drug class and disease presence or severity was
found according to sex [8]. Despite the inherent limitations of
observational studies, these studies involving separate popu-
lations provide some reassurance that the continued use of
ACE inhibitors and ARBs is unlikely to be harmful in patients
with Covid-19. To realize the exact impact of continuation
versus discontinuation of ACE inhibitors and ARBs on out-
comes in hospitalized patients with Covid-19, we will need to
await findings from the recently initiated randomized clinical
trial, REPLACECOVID (NCT04338009). At this time, the
authors agree with recommendations from the European
Society of Cardiology (https://www.escardio.org/Education/
COVID-19-and-Cardiology/ESC-COVID-19-Guidance) and
the American College of Cardiology, Heart Failure Society
of America and the American Heart Association (https://
www.acc.org/latest-in-cardiology/articles/2020/03/17/08/59/
hfsa-acc-aha-statement-addresses-concerns-re-using-raas-
antagonists-in-covid-19) that patients should be maintained
on their usual treatment for blood pressure control and
cardiac protection including ACE-inhibitors, ARBs, and any
other anti-hypertensive therapies and that treatment should not
be withdrawn if Covid-19 symptoms manifest. Indeed, pre-
mature withdrawal of these medications may increase the risk
of rebound hypertension and/or clinical decompensation in
high-risk patients. These societies further remark that initia-
tion of ACE inhibitors and ARBs therapy in very ill and un-
stable Covid-19 positive patients is not worthwhile.

In summary, the accumulating evidence of a somewhat
lower rate of COVID-19 disease severity in women needs to
be further investigated and correlated with the therapies that
infected women were taking at the time of the event. Large
data banks being generated in response to the pandemic need
to be probed for sex-driven differences in clinical presentation
of the disease, age, and medical history, including records of
anticontraceptive use and menopausal hormone therapy. The
undeniable evidence regarding the cardio-renal protective role
of estrogen and the increased rate of CVD expression post-
menopause strongly suggests an influence on the sensitivity of
women to SARS-CoV-2 infection. It is worth noting that two
clinical trials have been initiated to examine whether short-
term treatment of male Covid-19 positive patients with an
es t rogen patch (NCT04359329) or progesterone
(NCT04365127), in an effort to favorably modulate immune
system responses and limit symptoms to SARS-Cov-2 infec-
tion, is beneficial. We urge an aggressive exploration of the
current data to affirm these concepts and serve as a guide for
current treatment and the development of new therapies.
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